Package agents.forecast
Class PowerForecastError
- java.lang.Object
-
- agents.forecast.PowerForecastError
-
public class PowerForecastError extends Object
Calculates power values with errors following a normal distribution for power forecasting- Author:
- Johannes Kochems, Christoph Schimeczek
-
-
Field Summary
Fields Modifier and Type Field Description static de.dlr.gitlab.fame.agent.input.Tree
parameters
Specific inputs to parameterisePowerForecastError
modelling
-
Constructor Summary
Constructors Constructor Description PowerForecastError(de.dlr.gitlab.fame.agent.input.ParameterData input, Random random)
Creates aPowerForecastError
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
calcPowerWithError(double powerWithoutError)
Calculates a power forecast with errors following a normal distribution
-
-
-
Field Detail
-
parameters
public static final de.dlr.gitlab.fame.agent.input.Tree parameters
Specific inputs to parameterisePowerForecastError
modelling
-
-
Constructor Detail
-
PowerForecastError
public PowerForecastError(de.dlr.gitlab.fame.agent.input.ParameterData input, Random random) throws de.dlr.gitlab.fame.agent.input.ParameterData.MissingDataException
Creates aPowerForecastError
- Parameters:
input
- parameter group according toparameters
random
- random number generator - use FAME's RNG creation function to ensure reproducibility on identical seeds- Throws:
de.dlr.gitlab.fame.agent.input.ParameterData.MissingDataException
- if any required data is not provided
-
-
Method Detail
-
calcPowerWithError
public double calcPowerWithError(double powerWithoutError)
Calculates a power forecast with errors following a normal distribution- Parameters:
powerWithoutError
- perfect foresight power forecast- Returns:
- given power multiplied with a randomly generated forecast error factor
-
-